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Evolution of a nonlinear wave field along a laboratory tank is studied experimentally
and numerically. The numerical study is based on the Zakharov nonlinear equation,
which is modified to describe slow spatial evolution of unidirectional waves as they
move along the tank. Groups with various initial shapes, amplitudes and spectral
contents are studied. It is demonstrated that the applied theoretical model, which
does not impose any constraints on the spectral width, is capable of describing
accurately, both qualitatively and quantitatively, the slow spatial variation of the
group envelopes. The theoretical model also describes accurately the variation along
the tank of the spectral shapes, including free wave components and the bound waves.

1. Introduction
Shemer et al. (1998) studied the evolution of nonlinear wave groups along a

laboratory wave tank experimentally, and the results of the measurements were
compared with computer simulations based on the cubic Schrödinger equation. This
most commonly used nonlinear wave model was originally derived by Zakharov
(1968) for infinite water depth. Later, alternative derivations of this equation were
presented (see, e.g. Hasimoto & Ono 1972; Yuen & Lake 1975). The cubic Schrödinger
equation is accurate to the third-order in wave steepness ε, and describes the envelope
evolution of a propagating wave packet with a narrow-frequency bandwidth in deep
or intermediate depth water. The study by Shemer et al. demonstrated that certain
global properties of the spatial wave group evolution could indeed be described by
this model equation. The experiments, however, revealed certain subtler features of the
evolution process, which could not be adequately described by the cubic Schrödinger
equation. In particular, the initially symmetric steep wave group envelopes became
skewed as they propagated along the tank. The cubic Schrödinger equation, owing to
its symmetric properties, retains the symmetry of the initially symmetric wave group
envelope. Thus, the appearance of asymmetric wave groups cannot be described by
this model equation.

This failure of the cubic Schrödinger equation prompted Lo & Mei (1985) to apply
a modification of this model, the so-called Dysthe equation (1979). In the Dysthe
equation, which is valid for deep-water waves and which also describes the evolution
of the envelope, an additional nonlinear O(ε1) term appears which accounts for the
spectral width. Application of this equation by Lo & Mei gave agreement with
experimental observations.
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It should be noticed that both the cubic Schrödinger and the Dysthe equations
can be derived from the Zakharov (1968) equation by applying appropriate limits
on the spectral width (Zakharov 1968; Stiassnie 1984). For this reason, it can be
expected that the numerical calculations based on the Zakharov equation, which is
free of any constraints on the spectral width, can be advantageous for predictions
of the evolution of nonlinear wave fields. This conjecture was suggested by several
authors (Yuen & Lake 1982; Lo & Mei 1985; Trulsen & Dysthe 1997), although
it remained unconfirmed. The Zakharov equation (Zakharov 1968; Yuen & Lake
1982) is indeed the most general nonlinear wave model, which describes temporal
evolution of deep nonlinear waves in Fourier space. The modulation of each wave
component is due to nonlinear near resonant interaction of four waves (the so-called
Class I interactions). Zakharov’s derivation is based on the Hamiltonian formalism.
It is accurate to the third order in wave steepness, and has no restrictions on the
spectral width. Stiassnie & Shemer (1984) extended the derivation to intermediate
depth and to the next order, to account for the so-called Class II (five waves)
near-resonant interactions. Krasitskii (1990, 1994) and Glozman, Agnon & Stiassnie
(1993) extended the original derivation of Zakharov. The original (sometimes called
‘reduced’) Zakharov equation is considerably simpler than its recent modifications.
Its accuracy in predicting the domains of instability of nonlinear Stokes waves was
demonstrated by Stiassnie & Shemer (1984). They compared the results based on the
‘reduced’ Zakharov equation with the exact potential flow computations by Longuet-
Higgins (1978), McLean et al. (1981) and McLean (1982). Quantitative agreement
between these two computations was obtained up to Stokes wave steepness exceeding
0.3. Shrira, Badulin & Kharif (1996) applied the Zakharov equation to explain the
appearance of the crescent patterns on the sea surface, which were first observed by
Su (1982). Their analysis was based on an extension of the earlier study of Class II
interactions by Stiassnie & Shemer (1987) by modifying the Zakharov equation to
account for weakly non-conservative effects.

Shemer & Chamesse (1999) performed detailed experiments on Benjamin–Feir
instability of gravity–capillary waves (Benjamin & Feir 1967) and compared the
results with computations based on the Zakharov equation. These computations
predicted certain qualitative and quantitative variation in the shape of the instability
domains with the carrier wave frequency and amplitude. Those effects were indeed
observed in the experiments. The Benjamin–Feir linear stability analysis, however,
can only provide an indication of wave evolution on a short timescale.

The Zakharov equation is generally accepted as a superior model for the description
of the evolution of nonlinear water waves. In spite of that, no comparison of
computations based on this model with experiments on the long-time properties of
an evolving system of waves in a wave tank under controlled conditions has yet been
performed.

In any comparison of computations based on the Zakharov equation with the
experiments in a wave tank, the following considerations have to be taken into
account. First, the Zakharov integral equation represents a continuous model. In
contrast to that, in the laboratory experiments, periodic signals with finite periods
are usually used to drive the wavemaker, and the Fourier transform of these signals
results in a discrete spectrum. In other words, in order to use the Zakharov model,
it must be properly discretized. This problem has already been settled by Rasmussen
& Stiassnie (1999), in which a basic form of two-dimensional discretized Zakharov
equation is presented.

The second difficulty is that the standard form of the Zakharov equation describes
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slow temporal variation of the surface elevation distributed in an infinite space
domain, in which time t is treated as the slow variable with the initial condition at
t = 0. In contrast to that, in the laboratory tank, a wavemaker is customarily set at
one end of the wave tank and the desired temporal variation of the surface elevation
is generated by this wavemaker. Care is usually taken to eliminate wave reflection
from the far end of the tank. Thus, the wave tank can be treated as semi-infinite with
the known initial condition at x = 0. The wave gauges are located at fixed measuring
points along the tank. The experimentally obtained results describe the unidirectional
slow spatial variation of the surface elevation distributed in the time domain, in which
distance x is treated as the slow variable. Modification of the governing equation is
therefore required in order to describe slow spatial evolution of a wave field in a fixed
coordinate system. A unidirectional version of such an equation is developed and
presented in this study. In the current simulations, the development of the amplitude
of each frequency component in the spectrum of the wave field is followed along the
tank. The contributions of the free components, as well as of the related second-order
and third-order bound components to the instantaneous surface elevation and the
amplitude spectrum are calculated separately. In this sense, the restriction mentioned
in Melville & Rapp (1988), that Zakharov’s model is restricted to obtaining solutions
for the evolution of the envelope of the first harmonic band, is removed. A quadratic
model for such evolution on variable depth was derived by Agnon & Sheremet (1997)
and Agnon (1999). The evolution of a wave envelope in shallow water in a tank was
studied experimentally as well as numerically by the application of the Korteweg–de
Vries equation by Kit et al. (2000).

In this paper, the evolution of a wave field with a given initial frequency spectrum
along the tank is studied both experimentally and by applying the spatial Zakharov
model. A unidirectional version of this model is developed in the present study. A
more general derivation based on the Hamiltonian formulation is currently being
carried out by Zakharov (personal communication). The simplest possible initial
wave spectra are considered. A monochromatic wavetrain cannot be expected to
develop meaningful interaction along the finite length of the tank. The next possible
simplest spectral shape is a bimodal spectrum, i.e. the superposition of two waves
with different frequencies and identical amplitudes. The surface elevation due to these
initial conditions can be seen as a product of a sinusoidal envelope slowly varying in
time and a faster sinusoidal carrier wave. The next initial spectral shape considered
here has three dominant modes. In the time domain, the resulting surface elevation
is very similar to the first case. The last considered initial spectrum has a Gaussian
shape and thus includes numerous harmonics. The shape of the envelope in this case
is Gaussian as well. Similar initial conditions were applied in Shemer et al. (1998).

2. Basic equations
The third-order Zakharov integral equation, which describes slow temporal evo-

lution of gravity waves in inviscid fluid of constant (infinite or finite) depth can be
expressed as:

i
∂B(k, t)

∂t
=

∫∫∫ ∞
−∞
T0,1,2,3 B

∗(k1, t)B(k2, t)B(k3, t)

×δ(k + k1 − k2 − k3) exp (i(ω + ω1 − ω2 − ω3)t) dk1 dk2 dk3, (1)

where * denotes complex conjugate. The kernel T0,1,2,3 is given in Stiassnie & Shemer
(1984). The subscript j stands for the arguments of the kernel, kj , with 0 standing for
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no argument. The argument of the exponential function may become close to zero
under the constraints imposed by the Dirac δ-function. This fact is distinguished by
the definition of a nearly resonating quartet:

k + k1 − k2 − k3 = 0, |ω + ω1 − ω2 − ω3| 6 O(ε2). (2)

Equation (1) represents the mathematical model for describing the slow temporal
evolution of the free Fourier components for Class I, or quartet, nearly resonating
interactions.

The dependent variable B(k, t) in (1), which represents the free components in
the wave field, is related to a generalized complex ‘amplitude’ b(k, t). This complex
amplitude is composed of the horizontal Fourier transform of the surface elevation

η̂(k, t) and of the velocity potential at the free surface φ̂s(k, t):

b(k, t) = [εB(k, t2) + ε2B′(k, t, t2) + ε3B′′(k, t, t2) . . .] exp (−iω(k)t) (3)

b(k, t) =

(
g

2ω(k)

)1/2

η̂(k, t) + i

(
ω(k)

2g

)1/2

φ̂s(k, t), (4)

where ε is a small parameter representing the magnitude of nonlinearity, and the
slow timescale is defined as t2 = ε2t. Equation (3) implies that the wave field can be
decomposed into a dominant, slowly varying in time component B, and small but
rapid bound components B′, B′′, . . . . The corresponding bound components of the
wave field, B′, B′′, . . . , which do not obey the linear dispersion relationship, can be
expressed in terms of B. The second-order and the third-order bound components B′
and B′′, as well as the kernels necessary for their computations are given in Stiassnie
& Shemer (1984, 1987).

In the present experiments, waves generated by a wavemaker, which is driven
by a periodic computer-generated signal, propagate along the tank. Equation (1),
therefore, has to be modified to describe unidirectional spatial evolution of a wave
system generated at the wavemaker (x = 0).

Thus, the waves are periodic in time, with period T , and frequencies

ωn0
= 2n0π/T (n0 = 1, 2, . . .). (5)

Some of the ideas used in the derivation of the nonlinear Schrödinger equation
(Zakharov 1968; Stiassnie & Shemer 1984) are used here. In that derivation, the
frequency spectrum was assumed to be confined to a narrow band around a carrier
wavenumber k. Here, we split the spectrum into a superposition of a number of such
narrow bands, each of them centred about one of the discrete set of wavenumbers
kn0

. The surface elevation is then written as a sum of travelling waves with slowly
varying amplitudes. In the present application, the waves are strictly periodic in
time. Hence, the envelope is a function of x only, and not of t. In general, a
partial differential equation in slow space and time can be derived, of which the
traditional (temporal) Zakharov equation, and the new (spatial) Zakharov equation,
are both special instances (Zakharov, personal communication 1999). These two
special equations are convenient when initial conditions are prescribed in time and in
space, respectively.

Since b(k, t) is periodic in time, applying (3) we may define:

Cn0
(k) =

1

T

∫ T

0

dt B(k, t2) exp (−i(ω(k)− ωn0
)t). (6)
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Conversely,

B(k, t2) =

∞∑
n0=1

Cn0
(k) exp (i(ω(k)− ωn0

)t). (7)

Cn0
corresponds closely to A in § 3.2 of Stiassnie & Shemer (1984), where a narrow

spectrum is assumed, and a single A (slowly varying in time) is used to derive the
nonlinear Schrödinger equation.

The Fourier transform of Cn0
with respect to k−kn0

, scaled by (2ωn0
/g)1/2 is denoted

by An0
(x). The set {An0

(x), n0 = 1, 2, 3, . . .} is the frequency spectrum at x.

An0
(x) =

(
2ωn0

g

)1/2
1

2π

∫ ∞
−∞
Cn0

(k) exp (i(k − kn0
)x) dk. (8)

The amplitudes of the waves, an0
, are related to the surface elevation, η, through

η(x, t) = Re

∞∑
n=1

An0
(x) exp (i(kn0

x− ωn0
t)), (9)

where

ω2
n0

= gkn0
tanh kn0

h (10)

h being the water depth. This is similar to the relation of η to the variable B(k, t) in
the Zakharov equation (1), valid to leading order:

η(x, t) =
1

2π

∫ ∞
−∞

(
ω(k)

2g

)1/2

{B(k, t) exp (i(kx− ωt)) + c.c.} dk (11)

where c.c. is the complex conjugate.
We shall now derive the spatial Zakharov equation for the slow evolution of An0

(x).
Using (7), the left-hand side of (1) is written as:

iBt = −
∞∑

n0=1

(ω(k)− ωn0
)Cn0

(k) exp (i(ω(k)− ωn0
)t). (12)

ω − ωn0
can be expanded in a Taylor series:

ω − ωn0
= cgn0 (k − kn0

) + h.o.t.

where cgn0 =
∂ωn0

∂kn0

is the group velocity and h.o.t. are higher-order terms. Thus,

iBt = −
∞∑
n0=1

cgn0 (k − kn0
)Cn0

(k) exp (i(ω(k)− ωn0
)t). (13)

The right-hand side of (1) is written in terms of Cn0
as follows∫∫∫ ∞

−∞
dk1 dk2 dk3 T0,1,2,3

∞∑
n1=1

∞∑
n2=1

∞∑
n3=1

C∗n1
(k1)Cn2

(k2)Cn3
(k3)

× exp (−i(ω + ωn1
− ωn2

− ωn3
)t) δ(k + k1 − k2 − k3). (14)

We divide both sides of (13) and (14) by e−iωt and take the Fourier transform with
respect to time. This amounts to collecting terms with equal time dependence. We
then multiply by (2ωn0

/g)1/2 and take the inverse Fourier transform (with respect to



112 L. Shemer, H. Jiao, E. Kit and Y. Agnon

k − kn0
). The result is

icgn0an0x
=

1

2π

(
2ωn
g

)1/2 ∫∫∫ ∞
−∞

dk1 dk2 dk3 T0,1,2,3

×
∞∑

n1=1

∞∑
n2=1

∞∑
n3=1

C∗n1
(k1)Cn2

(k2)Cn3
(k3)

× exp (i(k2 + k3 − k1 − kn0
)x) δ(ωn0

+ ωn1
− ωn2

− ωn3
). (15)

Since the significant interaction is near resonance, we expand T0,1,2,3 in a Taylor series
about Tn0 ,n1 ,n2 ,n3

:

T0,1,2,3 = Tn0 ,n1 ,n2 ,n3
+ O(∆k), (16)

where ∆k is the width of the narrow spectral band around each wavenumber. We ap-
proximate the former kernel by the latter, and identify the inverse Fourier transforms
of C∗n1

, Cn2
and Cn3

with respect to (k− k1), (k− k2) and (k− k3) in the right-hand side
of (15). Substituting the approximation of T0,1,2,3 by Tn0 ,n1 ,n2 ,n3

into (15) gives

icgn0An0x
=

∞∑
n1=1

∞∑
n2=1

∞∑
n3=1

2π2

(
ωng

2

ωn1
ωn2

ωn3

)1/2

Tn0 ,n1 ,n2 ,n3

×A∗n1
An2

An3
exp (−i(kn0

+ kn1
− kn2

− kn3
)x)

×δ(ωn0
+ ωn1

− ωn2
− ωn3

). (17)

Note that the integrand of the spatial version of the Zakharov equation (17) is non-
zero only for near resonant quartets (kn0

, kn1
, kn2

, kn3
), so that kn0

+kn1
−kn2

−kn3
= O(ε2).

The terms which are O(kj − knj ) give rise to terms of the order of A∗jx , A2, A3 (which
are of higher order), as well as terms which are proportional to the horizontal velocity
of the mean flow, as discussed by Stiassnie & Shemer (1984). Thus, the model equation
(17) (which is valid for spectra of any width) is formally of the same order as the
modified nonlinear Schrödinger equation due to Dysthe (1979), which was derived
for a narrow spectrum. The parameter ε used in the nonlinear Schrödinger equation
model to describe the spectral width (as well as the wave steepness) corresponds here
to the spectral resolution. The spatial Zakharov equation can be extended to a quasi
three-dimensional setting, as well as to include Class II nonlinear interaction terms,
which are O(ε4).

The initial conditions must be calculated according to the initial amplitude and the
initial phase of each initial input free component at x = 0.

3. Description of the experiment
The experiments are performed in a wave tank, which is 18 m long and 1.2 m

wide, with transparent sidewalls and windows at the bottom. The tank is filled to
a mean water depth of 0.60 m. Waves are generated by a ‘Seawave Simulation’
RSW 30-60 wavemaker system. This modular type wavemaker, which consists of
four independent paddle sections hinged near the bottom of the tank, is located at
one end of the tank. In these experiments, all four paddles operate in phase with
identical amplitude. The wavemaker is driven by a computer-generated signal. In
order to perform measurements for various water depths, a false bottom made of
marine plywood plates has been constructed in the tank. In order to reduce the wave
reflection from the end of the tank, a sloping energy-absorbing beach is installed at
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Figure 1. Wavemaker displacement and its spectrum for the driving signal (18).

the far end of the tank. Experiments are carried out for two constant water depths:
60 cm and 17 cm.

The instantaneous surface elevation is measured by a set of four resistance wave
gauges. The wave gauge wires are made of 0.3 mm stainless steel. The sensors are
supported by bars mounted on a carriage, which can be moved along the tank.
Measurements of the surface elevation are performed at eight carriage locations
along the central line of the tank. The spacing between the adjacent gauges on the
bar is about 0.4 m, the distance between the measuring stations being about 1.6 m.
Information on the variation of the instantaneous surface elevation with time is thus
obtained for 32 locations x from the wavemaker, which covers the range of distances
from the wavemaker 0.24 m 6 x 6 11.31 m.

Three kinds of driving signals with two carrier wave periods, T1 = 0.7 s and
T2 = 0.9 s are employed in the experiments. Each driving signal is repeated periodically
and controlled by the computer.

The first driving signal is given by:

s(t) = s0 cos (Ωt) cos (ω0t) (Ω = ω0/20), (18)

where s0 is the forcing amplitude, ω0 is the radian carrier frequency, and Ω is the
modulation frequency. The period of this forcing signal is τ = 20T0, T0 being the
carrier wave period T0 = 2π/ω0. The spectrum of this signal is bimodal with two
distinct peaks of identical amplitude shifted from the carrier frequency ω0 by ±ω0/20.
The wavemaker displacement during one driving signal period and its amplitude
spectrum (T0 = 0.7 s) are presented in figure 1.

The second driving signal is given by:

s(t) = s0| cos (Ωt)| cos (ω0t) (Ω = ω0/20). (19)

The envelope of this signal is identical to that given by (18), but the period of the
forcing signal in this case is τ = 10T0. Its spectrum has a maximum peak at the carrier
frequency ω0 and consists of a set of discrete frequencies spaced by ω0/10, with only
the two closest to the carrier frequency sidebands being significant. The wavemaker
displacement during one driving signal period and the amplitude spectrum of this
driving signal (T0 = 0.7 s) are presented in figures 2(a) and 2(b) respectively.

In the third series of experiments, the driving signal is defined as:

s(t) = s0 exp (t/mT0)
2 cos (ω0t) (m = 3.5, −16T0 < t < 16T0). (20)

It is repeated periodically with the period τ = 32T0 and generates wave groups
that are widely separated. The discrete frequency spectrum of (20) has a Gaussian
shape with the maximum peak at ω0 and a larger number of significant peaks. The
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Figure 2. Wavemaker displacement and its spectrum for the driving signal (19).
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Figure 3. Wavemaker displacement and its spectrum for the driving signal (20).

longer period of the forcing signal results in a finer spectral resolution of ω0/32. The
corresponding graphs are presented in figure 3.

The maximum driving amplitudes s0 for each shape of the driving signal are
selected so that close to the wavemaker, the resulting carrier wave has the maximum
wave amplitudes a0 corresponding to the wave steepness ε = k0a0 required in each
particular experimental run.

4. Results
4.1. Selection of the initial conditions and number of free modes considered

In the system of discretized equations (17), each equation determines the spatial
evolution along the tank of a given free wave. In order to apply this system for
studying the evolution of the nonlinear wave field in the tank, the number of these
free waves considered (and thus the number of ODEs solved) has to be determined.

As mentioned by Shemer & Stiassnie (1985) and Stiassnie & Shemer (1987), at
least three free waves are required in order to enable significant nonlinear interaction,
i.e. a change in the wave amplitudes. This holds for both Class I and Class II
interactions. A long time evolution pattern with only three free waves was studied
in Stiassnie & Shemer (1987) for Class I interactions, in which the considered three
free waves included one finite-amplitude carrier wave and two initially weak most
unstable disturbances obtained by linear stability analysis. No additional free waves
were incorporated in their model of the evolution.

The spectra of the driving signals considered in the present study, however, include
two harmonics of identical amplitude for the driving signal (18) and, strictly speaking,
an infinite number of harmonics for the driving signals (19) and (20). All adopted
periodic driving signals have a narrow spacing between the adjacent modes, f/f0 � 1.
Additional free modes can be generated in the course of the evolution process owing
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f5 f3 f1 f2 f4 f6

Figure 4. Model with 6 free components.

to nonlinear interactions. A sketch showing the four additional closest free waves that
can be generated for the driving signal (18) is presented in figure 4.

At the wavemaker, there are only two free modes f1 and f2 with finite amplitudes,
the amplitudes of all the other modes are set to be zero. Nonlinear interactions among
the two main free modes and their neighbours result in the gradual appearance along
the tank of additional free modes, such as f3 and f4, and then remote free modes
f5 and f6. Additional, even more remote sideband-free components can be added if
necessary. Similar procedures can be applied for the driving signals (19) and (20).

It can thus be expected that the wave spectrum becomes wider in the process of
evolution along the tank. The desired number of modes for each specific case has to be
determined from practical considerations. In the present study, the initial number of
free modes is determined based on the initial wave spectrum and the wave steepness.
The system of equations (17) is solved numerically, and the resulting wave spectra
are analysed along the tank. In the following runs, the number of free modes can
be either increased or decreased, depending on the obtained simulated spectra. The
number of free waves is considered to be adequate when the simulated amplitudes at
both ends of the frequency spectrum are sufficiently small for the whole extent of the
wave tank. This means that there are no effective nonlinear interactions between the
modes in the adopted spectrum and more remote modes.

Once the number of the desired free modes n0 is determined, the corresponding
resonating terms must be selected and calculated. For each free mode considered,
there are four kinds of combination that satisfy the near resonant condition. These
combinations include each free mode taken four times, which interacts with itself,
then each possible pair of two free modes, each taken twice. Both these types of
combination satisfy exact resonance conditions. In addition, there are combinations
of three free modes, in which one of the waves is taken twice, and combinations of
four different modes. For those types of combination, the resonant conditions are
only approximately satisfied.

All terms based on those four types of combination for each free wave are selected
by computer. The symmetry of the interaction coefficient with respect to the last two
indices, Tj,k,m,n = Tj,k,n,m allows the number of independent terms to be decreased.
After the number of free modes is chosen and the resonating sets are selected, the
Zakharov equation is expressed as a set of mode-coupled nonlinear complex ordinary
differential equations (ODEs).

The evolution of the free waves A(fn, x), n = 1, . . . , N, along the tank is computed
by solving a set of mode-coupled N nonlinear complex ODEs, together with the
specified initial conditions by using the fourth-order Runge–Kutta method. The exact
form of each equation constituting this system is given in the Appendix.

Once the problem of the evolution of the free components is solved, the related
second-order and third-order bound components can be computed according to the
discretized equations given in the appendix of Stiassnie & Shemer (1987). The corre-
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Number of bound Wavenumber Wave
wave n kn frequency χn Amplitude A′

n0 + n0(j − 1) + k kj + kk −ωj − ωk −V (1)
n,j,kAjAk/(ωn − ωj − ωk)

n0 + n2
0 + n0(j − 1) + k −kj + kk ωj − ωk −V (2)

n,j,kA
∗
jAk/(ωn + ωj − ωk)

n0 + 2n2
0 + n0(j − 1) + k −kj − kk ωj + ωk −V (3)

n,j,kA
∗
jA
∗
k/(ωn + ωj + ωk)

Table 1. The second-order bound components.
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Figure 5. Effect of the initial conditions, driving signal (18), h = 0.6 m, T0 = 0.9 s, ε = 0.21.
Measured at (a) x = 0.24 m and (b) x = 9.47 m amplitude spectra. Simulated amplitude spectra
(d, f) at x = 9.47 m for (a) asymmetric and (b) symmetric initial conditions at x = 0.

sponding wavenumbers and wave frequencies of the second-order bound components
A′ are given in table 1.

If n0 is the number of the free waves, the total number of the second-order bound
components n2 = 3n2

0, and of the third-order bound components n3 = 4n3
0. The

accumulated effect of the third-order bound components A′′ proved to be vanishingly
small, even for the highest forcing amplitudes employed in this study (Jiao 1999). These
components thus can be disregarded in the following results, saving considerable
computer time without any noticeable effect on the accuracy.



Evolution of a nonlinear wave field along a tank 117
A

m
pl

it
ud

e 
(c

m
)

Frequency (Hz)

f1

f2

f4

f3

f1

f2

f4
f3

f7 f5

f6 f8

f1

f2

f4
f6f8 f9 f10

f3

f5f7

f2

f4
f6f3

f5

(a) (b)

(c) (d )

3

2

1

0 1 2 3

3

2

1

0 1 2 3

3

2

1

0 1 2 3

3

2

1

0 1 2 3

f1

A
m

pl
it

ud
e 

(c
m

)

Frequency (Hz)

Figure 6. Effect of the number of free modes. Simulation results at x = 9.47, initial conditions as
in figure 5(e). (a) 4 free modes; (b) 6 free modes; (c) 8 free modes; (d) 10 free modes.

With all free and second-order bound wave components known, the total surface
elevation η can be obtained as:

η =
1

2π

n0+3n2
0∑

n=1

(
ωn

2g

)1/2

[Ãn exp (i(knx+ χnt)) + c.c.]. (21)

For free waves, Ãn are calculated for each mode with wavenumber kn and wave
frequency χn = −ωn. For bound waves, Ãn, kn and χn are calculated according to
table 1.

Owing to imperfections, the spectral content of surface elevation variation in the
vicinity of the wavemaker is somewhat different from that of the driving signal and
varies slightly from one experimental run to another. An example of the surface
elevation spectrum measured in the tank in the close vicinity of the wavemaker
(x = 0.24 m) is given in figure 5(a). In this example, the driving signal (18) with
carrier wave period T0 = 0.9 s is applied at the water depth h = 0.6 m (k0h = 3.0) for
the high-amplitude case, ε = 0.21. The corresponding spectrum measured at a remote
location (x = 9.47 m) is presented in figure 5(b). The spectrum presented in figure 5(a)
is characterized by two dominant peaks of slightly unequal amplitudes of about 2 cm
each and several lesser peaks with amplitudes smaller than 0.25 cm. The frequency
resolution of the experimentally obtained spectra is 2∆f = (f2 − f1)/2, in agreement
with the period of the driving signal (18). Minor peaks are observed in figures 5(a)
and 5(b) at the carrier wave frequency f0 = (f2 + f1)/2, as well as at frequencies
separated from f0 by integer multiples of 2∆f. Comparison of figures 5(a) and 5(b)
indicates that those peaks remain of minor importance along the tank. Introduction
of these harmonics into the initial condition in a number of numerical simulations
resulted in a similar behaviour, and those peaks remained small throughout the whole
process of the spatial evolution. These experimental and numerical results therefore
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Figure 7. Measured (left-hand column) and simulated using 12 free modes (right-hand column)
surface elevation. Wave group parameters as in figure 5. (a, e) x = 0.24 m, (b, f) x = 3.69 m, (c, g)
x = 6.58 m, (d, h) x = 9.47 m.

provide justification for reducing the spectral resolution of computations with the
driving signal (18) by disregarding those harmonics.

Two possible initial conditions at x = 0 in the numerical simulations can thus
be considered. In the first, the initial spectral shape corresponding to the dominant
peaks measured in the tank is selected (figure 5c). The second option is the initial
condition corresponding to that of the driving signal with two equal peaks (figure
5e). The height of those peaks is taken as corresponding to the mean energy of the
two harmonics (f1 and f2) in figure 5(a). The additional three high harmonic peaks
and one low harmonic peak in figure 5(a) are related to the two dominant peaks
and therefore can be seen as the corresponding bound components. These bound
components can be computed from the given values of the free waves f1 and f2 using
the expressions from table 1. These bound components are also plotted in figures
5(c) and 5(f). It should be noted that in contrast to the model simulations, the free
and bound components could not be separated in experimental observations. The
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Figure 8. Measured (left-hand column) and simulated using 12 free modes (right-hand column)
amplitude spectra. Driving signal (19), h = 0.6 m, T0 = 0.9 s, ε = 0.21. Locations as in figure 7.

simulated bound components are distinguished in the presented figures from the free
components.

The comparison of the simulated spectra at a remote location (figure 5d, f) with
the experimental results (figure 5b) shows that the agreement in the case of two equal
peaks is at least as good as in the alternative case. Thus, in the following Zakharov
model simulations, the simpler driving signal shapes (18)–(20) and their corresponding
spectra are chosen as the initial conditions.

All simulations presented in figure 5 were performed using 12 free modes. This
number of free modes was selected using the procedure described above, which
requires vanishing free mode amplitudes at the edges of the spectrum. The effect of
the number of free modes for the conditions of figure 5 is illustrated in figure 6. The
results presented in figure 6(a) show that when only 4 free modes are incorporated in
the evolution process, the simulated amplitude spectrum is totally different from that
of the experimentally measured (figure 5b). The amplitudes of the two extreme free
components, f3 and f4, are quite large and their possible interactions with other free
modes leading to higher and lower harmonics are effectively cut off. With the number
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Figure 9. Measured and simulated surface elevations for conditions and locations of figure 8.

of free modes increased to 6 (figure 6b), and then further increased to 8 (figure 6c) and
to 10 (figure 6d), the simulated results are gradually approaching those obtained in the
experiments. At the same time, the amplitudes of the two extreme free components
decrease as expected. In figure 6(d), the amplitude of the low-frequency extreme free
component f7 is already quite small. Therefore, there is no need for additional free
modes at this end of the spectrum, while more free modes, f11 or f12, are still required
at the high-frequency end, since the amplitude of the free component f10 in figure 6(d)
is not sufficiently small. When the number of free modes is increased to 12 (figure
5f), the simulated spectrum is close to the measured one and the amplitudes at both
ends of the spectrum of free components are quite small. Thus, in this particular case,
there is no further need to increase the required number of free modes.

4.2. Detailed comparison of experiments and numerical simulations

Since no interesting evolution patterns were observed for the small-amplitude cases,
only results for the intermediate and the large amplitudes are presented here. In what
follows, each of figures 7–15, which present the simulated surface elevations and the
amplitude spectra, consists of eight frames. The left-hand column (a–d) represents the
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Figure 10. Measured (left-hand column) and simulated using 39 free modes (right-hand column)
surface elevations. Driving signal (20), h = 0.6 m, T0 = 0.7 s, ε = 0.21. (a, e) x = 0.24 m, (b, f)
x = 2.89 m, (c, g) x = 5.78 m, (d, h) x = 8.67 m.

measured variations of the surface elevation with time in the vicinity of the wavemaker
(x = 0.24 cm), and at the remote locations typically around x = 3.0 m, x = 6.0 m,
and x = 9.0 m, or the experimentally determined amplitude spectra calculated at the
corresponding locations. The right-hand column (e–h) represents the corresponding
numerically simulated results at the same locations as in the experiments.

The temporal variation of the surface elevation for the conditions of figure 5 is
presented in figure 7. This figure demonstrates that the simulations reflect properly
not only the modification of the amplitude spectrum along the tank, but also the
evolution of the group shape. Gradual development along the tank of the envelope
asymmetries, both left–right and trough–crest, can be seen clearly in the experimental
results as well as in the simulations. Similar left–right asymmetry, which is manifested
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Figure 11. Measured and simulated surface elevations for conditions and locations of figure 10.

in the forward leaning of the wave group front, was reported by Lo & Mei (1985) for
an initial bimodal spectrum resembling that employed here.

The results presented in figure 8 for the amplitude spectra and in figure 9 for
the temporal variation of the surface elevation are for the case with h = 0.6 m,
T0 = 0.9 s, (k0h = 3.0), driving signal (19) and ε = 0.21. The results are given at the
same locations as in figure 7. In these frames, both the simulated results and the
experimental observations demonstrate similar energy spreading in the course of the
propagation of waves away from the wavemaker. This spreading can be observed
both in the amplitude spectra and in the surface elevation, which becomes especially
prominent at the fourth location (x = 9.47 m).

Next, results obtained for the driving signal shape given by (20) with the same
wave steepness ε = 0.21 are presented in figure 10 for the amplitude spectra and in
figure 11 for the surface elevation. In those figures, the carrier wave period T0 = 0.7 s
and the water depth h = 0.6 m (k0h = 4.93). The qualitative and even quantitative
agreement between the simulations and the experimental results in this case, which
includes numerous free modes up to n0 = 36, is as impressive as in the previous
cases with simpler initial spectral shapes. The above results clearly demonstrate
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Figure 12. Measured (left-hand column) and simulated using 39 free modes (right-hand column)
amplitude spectra. Driving signal (20), h = 0.6 m, T0 = 0.9 s, ε = 0.21. Locations as in figure 7.

that the spatial Zakharov equation (17) adequately describes the evolution of the
nonlinear waves along the tank at least as long as the wave steepness does not exceed
ε = 0.21.

The effect of the wave steepness is studied in figures 12 and 13. Here T0 = 0.9 s,
water depth h = 0.6 m, so that k0h = 3.0. Wave amplitude spectra are presented in
these figures for two values of the carrier wave steepness, ε = 0.21 and ε = 0.14,
respectively. The agreement between the experiments and the simulations is good for
both amplitudes. The spectrum widening and asymmetry are much more pronounced
at the high amplitude in figure 12 than at the lower amplitude in figure 13. In fact,
the amplitude spectrum in figure 13 undergoes only minor modification along the
whole tank. For that reason, no other results for ε = 0.14, as well as for even lower
amplitude, ε = 0.07, which were accumulated in the course of the present study, are
given here.
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Figure 13. As in figure 12, except ε = 0.14.

The dimensionless water depths for the carrier wave frequencies in the cases
considered above correspond to nearly deep-water conditions. The spatial Zakharov
equation (17) is supposed to be valid for water of intermediate depth (as long as
the dispersion remains sufficiently strong). Experiments and model simulations with
the driving signal given by (19) at high amplitude of forcing ε = 0.21 were therefore
performed for T0 = 0.7 s and water depth h = 0.17 m, so that k0h = 1.54. The
agreement between the measured and the simulated amplitude spectra in figure 14 is
somewhat less impressive than in the deeper water cases, in particular, with respect
to the higher harmonics in the spectrum. The stimulated temporal variation of the
surface elevation in figure 15, however, retains strong similarity to the experimental
results. Thus, (17) still retains its validity even when dispersion becomes relatively
weak.
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Figure 14. Measured and simulated (12 free modes) spectra in intermediate water depth. Driving
signal (19), h = 0.17 m, T0 = 0.7 s, ε = 0.21. Locations as in figure 10.

4.3. Phase behaviour

The spatial Zakharov model equation applied here describes the evolution of the
complex wave-amplitude spectrum along the tank. The wave-amplitude spectra pre-
sented in the previous section lead to an understanding of the interaction between
various modes, the mechanism of generation of new free waves and the correspond-
ing process of the spectrum broadening. Nevertheless, the phase information in the
complex wave spectra is essential in determining the eventual shape of the surface
elevation variation. In this respect, figures 5(b) and 5(f) can be compared with figures
8(d) and 8(h), respectively. The driving signals in those two figures, (18) and (19), have
totally different spectral shapes. The amplitude spectra obtained for these different
driving signals at the remote location, however, are somewhat similar, with a single
dominant peak. In spite of that, the corresponding surface elevations in figures 7(d, h)
and 9(d, h) are totally different. For the bimodal initial spectrum, figure 7, each wave
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Figure 15. Measured and simulated surface elevations for conditions and locations of figure 14.

group retains its clear identity and the surface elevation at the boundary between the
neighbouring groups remains zero. Contrary to that, no clear distinction between the
groups can be seen in figure 9.

The variations of phases along the tank, computed for the four dominant modes
around the carrier wave frequency are presented in figures 16(a) and 16(b) for the
conditions of figure 5 and figure 8, respectively. It is obvious that the phase differences
between the dominant modes behave in a different fashion in figures 16(a) and 16(b),
thus contributing significantly to various surface elevation variation patterns.

5. Concluding remarks
In the present study, the experiments and the numerical simulations are carried out

in an interrelated fashion in order to study the evolution patterns of nonlinear wave
fields in a laboratory wave tank.

The theoretical simulations are based on the Zakharov model, in which no con-
straint is imposed on the frequency bandwidth. For that reason, the present simu-
lations yield much better agreement with the experiments than the previously used
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Figure 16. Phase variation along the tank for 4 dominant spectral components, h = 0.6 m,
T0 = 0.9 m, ε = 0.21. (a) Driving signal (18); (b) driving signal (19).

cubic Schrödinger model. The Zakharov model is modified here in order to describe
the spatial evolution of a complicated gravity wave field in a tank.

Wave fields with three different initial spectra were considered, starting from a
simple spectrum containing just two free waves, up to a fairly complicated spectrum
with numerous harmonics of Gaussian shape. Values of the maximum wave steepness
up to ε = 0.21 were considered. A procedure is developed to determine the necessary
number of free waves to be considered in the model, depending on the initial spectral
shape, wave amplitudes and evolution distance. Bound waves corresponding to the
free wave field considered are computed and shown to contribute significantly to the
temporal variation of the surface elevation in the tank.

Convincing agreement between the simulations and the experimental results is
obtained. For all experimental conditions, the simulations reflected correctly the
broadening of the spectrum along the tank, as observed in the experiments. Qualitative
and quantitative agreement between the measured and simulated amplitude spectra
was obtained at different locations along the tank. Temporal variation of the surface
elevation was reconstructed from the computed complex amplitude spectra and
compared with the direct wave gauge measurements at the corresponding measuring
stations. In particular, impressive correspondence was obtained between the skewed
wave group shapes at relatively remote locations in the experiments and the numerical
simulations.

The total body of experimental and numerical results accumulated in the present
study indicates that the Zakharov model constitutes an adequate theoretical model
for studying the evolution of nonlinear gravity waves over intermediate and nearly
deep water.



128 L. Shemer, H. Jiao, E. Kit and Y. Agnon

This work was supported in part by grants from Israeli Science Foundation and
from INTAS.

Appendix
The jth equation describing the spatial evolution of complex amplitude Aj =

A(ωj, x) of each one of N free waves can be written as

cgl i
dAj
dx

= Tj,j,j,j |Aj |2Aj +
∑
l 6=j

2Tj,l,j,l |Al |2Aj

+
∑
p,q 6=j

2ωj=ωp+ωq

Tj,j,p,qA
∗
jApAq exp [−i(2kj − kp − kq)x]

+
∑
l,p,q 6=j

ωj+ωl=ωp+ωq

Tj,l,p,qA
∗
l ApAq exp [−i(kj + kl − kp − kq)x] (A 1)

where l, p, q = 1, 2, . . . , N.
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